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Application of machine learning with a surrogate model to explore seniors’ daily 
activity patterns
Yiling Deng

School of Design and Architecture, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China

ABSTRACT
Investigating seniors’ daily activity patterns (DAPs) is essential to understand their activity-travel needs. 
Although some studies have applied machine learning (ML) to derive DAPs, few of them have sought 
to improve the interpretability of ML. This study aims to predict and interpret seniors’ DAPs in the 
Chinese context by using ML with a surrogate model. First, a boosted C5.0 algorithm was employed to 
model seniors’ DAPs, which provided more accurate predictions than the multinomial logit (MNL) 
model. Second, a rule-based C5.0 algorithm was used as a surrogate model to approximate the 
prediction function of the boosted C5.0 algorithm and to provide insight into the underlying decision 
processes in the boosted C5.0 algorithm. The results show that retired men are most likely to lack out- 
of-home activities. A good residential built environment, especially good walkability and public transit 
accessibility, increases seniors’ out-of-home activities. This study provides recommendations for 
increasing seniors’ mobility.
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Introduction

Population aging has become a notable and common demographic 
phenomenon in most countries. According to World Population 
Prospects 2019 released by the Population Division of the United 
Nations, the number of people aged 60 and above will double by 
2050, rising from 1.0 billion in 2020 to 1.4 billion in 2030 and 
2.1 billion in 2050 globally (World Population Prospect 2019). As 
the most populous country, China has been witnessing prominent 
demographic aging because of increased longevity and declining 
birth rates. The share of the aging population in China is 17.9% in 
2018 and is projected to reach 25% in 2030 (China’s Population 
Aging Trend Forecast Report 2018). The rapid increase of the aging 
population is supposed to dramatically influence urban and trans-
portation systems. Considering the special activity-travel needs of 
seniors is important for urban planners and transportation opera-
tors to create a better travel environment for seniors.

Since trips are derivatives of out-of-home activities, examining 
seniors’ daily activity patterns (DAPs) rather than trip character-
istics can provide a full understanding of the underlying decision 
processes of their travel behavior. However, previous studies have 
focused more on seniors’ trip characteristics, such as trip frequency 
(Cheng et al. 2019; Szeto et al. 2017; Böcker, Van Amen, and 
Helbich 2017; Hahn et al. 2016; Choo, Sohn, and Park 2016; Feng 
2017), trip mode (Szeto et al. 2017; Böcker, Van Amen, and Helbich 
2017; Zhang et al. 2019; Soltani et al. 2018), and distance traveled 
(Feng 2017), and less on seniors’ DAPs. Methodologically, most 
studies used logit models to investigate individuals’ DAPs (Dianat, 
Habib, and Miller 2020; Kristoffersson, Berglund, and Algers 2020). 
Machine learning (ML), such as the boosted C5.0 algorithm, has 
received increasing attention owing to its predictive power. 
However, the lack of interpretability is a serious drawback of the 
boosted C5.0 algorithm as well as other ML algorithms. It is worth 
investigating how to make boosted C5.0 algorithm as well as other 

ML algorithms as interpretable as econometric or rule-based tech-
niques, which would facilitate broader applications of ML in mod-
eling DAPs and other activity-travel behaviors.

Seniors’ DAPs

Researchers and practitioners have developed different activ-
ity-based models (e.g., constraint-based models, econometric 
models, and computational process models) to provide the 
realistic behavioral representations of the underlying decision 
processes of travel behavior (Rasouli and Timmermans 2014). 
The DAP choice or scheduling module is the cornerstone of 
the activity-based model and the key feature that distinguishes 
the activity-based model from the trip-based model (Auld and 
Mohammadian 2009). A growing body of literature has inves-
tigated individuals’ DAPs (Dianat, Habib, and Miller 2020; 
Kristoffersson, Berglund, and Algers 2020; Millward, Hafezi, 
and Daisy 2019; Hafezi, Liu, and Millward 2018; Allahviranloo 
and Recker 2013). However, few studies have assessed seniors’ 
DAPs. Two exceptions are the studies of Habib and Hui (2017) 
and Lai et al. (2019). They both used MDCEV models.

Seniors’ DAPs have not yet been fully explored in the Chinese 
context. The special household structure, early retirement age, and 
social and cultural contexts may differentiate Chinese seniors’ 
DAPs and their influences from those in Western countries. 
Although Lai et al.’s study was based in Hong Kong, they only 
analyzed older couples in two-member households. In addition, 
the sociodemographics and built environment of mainland 
Chinese cities are very different from those of Hong Kong. For 
example, Hong Kong has a higher population density and lower car 
ownership. More research is needed to understand Chinese seniors’ 
DAPs.
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Methods to estimate DAPs

Modeling DAPs is a discrete choice problem that can be solved 
with logit models or ML. Logit models have been most com-
monly used, including multinomial logit (MNL) models (Dianat, 
Habib, and Miller 2020), nested logit (NL) models 
(Kristoffersson, Berglund, and Algers 2020), and multiple discrete 
continuous extreme value (MDCEV) models, which are 
a marriage of a discrete choice model to determine participation 
or not and a linear regression model to determine activity dura-
tion (Habib and Hui 2017; Lai et al. 2019; Shamshiripour and 
Samimi 2019). A few studies applied ML to derive DAPs, such as 
random forests (Hafezi, Liu, and Millward 2018) and support 
vector machines (Allahviranloo and Recker 2013). MNL, NL, 
and MDCEV models all presuppose a linear model structure, 
while ML allows for more flexible model structures, which 
reduces model incompatibilities with empirical data. Thus, ML 
can perform better than logit models in prediction (Zhao et al. 
2020; Martín-Baos, García-Ródenas, and Rodriguez-Benitez 
2021).

ML also has limitations and its application in modeling DAPs 
should be improved in at least two ways. First and foremost, ML has 
often been criticized for being ‘black-box’, which is a major obstacle 
to its use in many practical applications. Few studies have sought to 
improve the interpretability of ML (Koushik, Manoj, and 
Nezamuddin 2020). Training a surrogate model is an effective way 
to interpret decision processes in ML (Molnar 2020). To the best of 
our knowledge, the surrogate model has not been used to explain ML 
in activity-travel behavior studies. Second, decision trees are the most 
widely used algorithms in ML and are the base classifiers for ensem-
ble learning, such as boosting and bagging. Among decision tree 
algorithms, CHAID (Chi-squared Automatic Interaction Detection) 
(Rashidi and Mohammadian 2011; Marquet and Miralles-Guasch 
2014; Zhan et al. 2016; Fasihozaman Langerudi, Rashidi, and 
Mohammadian 2016) and CART (Classification and Regression 
Trees) (Hafezi, Liu, and Millward 2019; Pitombo, de Souza, and 
Lindner 2017; Pitombo, Kawamoto, and Sousa 2011; Pitombo, 
Sousa, and Filipe 2009) have been often used in activity-travel 
behavior studies. C5.0, a thorough decision tree algorithm developed 
by Quinlan (2014), has been rarely used, although it works well for 
most types of problems directly out of the box. C5.0 differs from 
CART and CHAID in the split mechanism, pruning process, and 
definition of purity index. Compared with CART, C5.0 is more 
accurate because it is not restricted to making binary trees. 
Compared with CHAID, the trees of C5.0 are usually smaller, 
which makes the results more interpretable and generalizable. C5.0 
has a boosted version, which is faster than AdaBoost and random 
forest because it uses many fewer trees. Fernandez-Delgado et al. 

assessed 179 classifiers from 17 families using 121 data sets and 
found that C5.0 was among the top 5 algorithms that produced the 
best results (Fernandez-Delgado et al. 2014).

Objectives of this research

This study aims to model seniors’ DAPs to better understand their 
activity-travel needs. We followed the framework of discrete choice 
activity-based models, such as DaySim (Bowman and Ben- 
Akiva 2001) and CT-RAMP (Davidson et al. 2010). These widely 
used prototype activity-based models usually generate DAPs first 
and then generate tours as well as trips for individuals. Rather than 
using a set of frequency choice models, we formulated a DAP choice 
model making integrated decisions on activity agenda, tour pur-
poses, and tour complexity for seniors. We used an ML technique – 
boosted C5.0 algorithm to achieve a more accurate prediction of 
DAPs and an interpretable surrogate model – rule-based C5.0 
algorithm to reveal the inner processes in the ML technique.

The contributions of this paper lie on the followings:
1. to apply the boosted C5.0 algorithm to predict seniors’ DAPs;
2. to apply the rule-based C5.0 algorithm as a surrogate model to 

approximate and explain the boosted C5.0 algorithm; and
3. to reveal the factors influencing seniors’ DAPs in the Chinese 

context.
The remainder of this paper is organized as follows. Section 2 

presents data and variables. Section 3 introduces the methodology. 
Section 4 analyzes the results. Section 5 discusses the conclusions.

Data and variables

Data

This study was based on the Nanjing Household Travel Survey 
carried out in 2012. The data included one-day travel diaries and 
household and personal characteristics of 5,974 individuals from 
2,007 households. In this study, seniors were defined as those aged 
50 and over. The definition of seniors is controversial. It is usually 
associated with changes in the life course, such as retirement, or with 
the age at which seniors receive pensions or medical benefits. Most 
studies in Western countries defined seniors as those aged over 60 or 
65, which reflects the legal retirement age in these societies. The 
reason for choosing the age of 50 as the selection criterion for seniors 
in this study was that the statutory retirement age in China is 60 for 
men and 55 or 50 for women. Seniors were further divided into two 
main age cohorts: age 50–60 as the younger senior cohort (transi-
tional cohort) and age 60 or older as the senior cohort. The inclusion 
of the younger senior cohort can reflect the impacts of life transitions 
on DAPs as well as provide information on the activity and travel 

Table 1. List of variables

Variable Coding Type Choice

Daily activity pattern DAP Categorical SN, SM, SN-SN, H, CN, CM, SM-SN, SM-SM
Work status Job Binary Working, Retired
Age Age Binary Younger senior (50–59), Senior (≥ 60)
Gender Gen Binary Female, Male
Education level Edu Binary Low, High
Bus pass ownership BP Binary Yes, No
Driver’s license ownership DL Binary Yes, No
Household car ownership Car Ordered 0, 1, ≥2
Household bicycle ownership Bike Ordered 0, 1, 2, ≥3
Household income Inc Ordered Low, Mid, High
Family composition FC Categorical Elderly, Adult, Extended
Residential built environment BE Categorical 1, 2, 3, 4
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needs of the future senior cohort. The same definition of seniors has 
been used in several studies in China (Feng 2017; Feng et al. 2013) 
and a similar classification and naming of senior cohorts have been 
used in studies in the U.S. (Moniruzzaman et al. 2013), Canada 
(Moniruzzaman and Páez 2016), and Singapore (Hou 2019).

After data cleaning, 1589 seniors from 968 households were 
screened out. All variables used in the model are presented in 
Table 1. The dependent variable is seniors’ DAPs. The independent 
variables include sociodemographics and built environment factors.

DAPs

DAPs were identified by the presence of tours. In practice, different 
activity-based models use different DAP coding schemes, which 
have implications for overall model system design. In this study, 
we proposed a realistic but simplified DAP coding scheme, which 
can be predicted in a single model.

Eight precoded categories of trip purpose were reported by older 
adults: work, personal business, shopping, recreation/entertain-
ment, social, medical appointment, return, and other. These activ-
ities were grouped into mandatory activities, including work, and 
nonmandatory activities, including maintenance activities, i.e., per-
sonal business, shopping, and medical appointment, and discre-
tionary activities, i.e., recreation/entertainment, social, and other. 
We only distinguished mandatory and nonmandatory purposes 
because of the small amount of data.

Tours were defined as home-to-home loops. The tour purpose 
was named based on the activity purpose. If a tour included two or 
more activities with different purposes, the tour purpose was 
assigned based on the primary activity. A tour with only one stop 
was called a simple tour. A tour with more than one stop was called 
a complex tour. Considering the tour purpose and number of stops, 
tours were classified into four categories: simple mandatory tour 
(SM), simple nonmandatory tour (SN), complex mandatory tour 
(CM), and complex nonmandatory tour (CN). A complex manda-
tory tour can also include nonmandatory activities, although not 
necessarily. However, a complex nonmandatory tour can only 
involve nonmandatory activities.

DAPs were simply the combinations of tours without consider-
ing sequences. By analyzing the data, thirteen categories of DAPs 
were detected. Five categories of DAPs were rather small, together 
accounting for 3% of all DAPs. These DAPs were grouped into their 
proximate DAPs as follows: twenty-one CN-SN were grouped into 
CN, nineteen SN-SN-SN were grouped into SN-SN, seven CM-SM 
were grouped into CM, three SM-SM-SO were grouped into SM- 
SO, and one CN-CN were grouped into CN. After processing, eight 
categories of DAPs were remained. The codes and total numbers of 
these DAPs are as follows: SN (649), SM (412), SN-SN (207), 
H (119), CN (70), CM (54), SM-SN (35), and SM-SM (43). Note 
that H (stay home all day) was also a category of DAP, which is 
quite common among seniors. The choice structure of DAPs is 
illustrated in Figure 1.

Sociodemographics

Sociodemographics included gender, age, work status, education 
level, driver’s license ownership, bus pass ownership, household 
income, household car ownership, household bicycle ownership, 
and family composition. Age, gender, driver’s license ownership, 
and bus pass ownership all had two options and were treated as 
nominal variables. Other variables with multiple choices were pro-
cessed as follows and then treated as nominal variables: the options 
for household income were merged from seven to three (i.e., low, 
middle, or high), for work status from nine to two (i.e., working or 
retired), and for education level from four to two (i.e., low or high). 
Household car ownership was limited to three choices (i.e., 0, 1, 2 
+). Household bicycle ownership was limited to four choices (i.e., 0, 
1, 2, 3+).

Chinese household structure is unique. For economic and cul-
tural reasons, seniors usually live with their married or unmarried 
adult children. Three categories of family composition were dis-
cerned as follows and then treated as a categorical variable: elderly 
family (single or couple seniors), adult family (seniors living with 
adult children), and extended family (seniors living with children 
and grandchildren). The proportions of seniors who lived in elderly 
families, adult families, and extended families were approximately 
16%, 63%, and 21%, respectively.

Built environment

The ‘5 Ds’ introduced by Ewing and Cervero (i.e., density, diversity, 
design, destination accessibility, and distance to transit) are the 
classic variables for characterizing the residential built environment 
(Ewing and Cervero2010). Residential density (Res), employment 
density (Emp), Walk Score (WS), intersection density (Int), dis-
tance to Central Business District (CBD), distance to metro (MRT), 
and bus stop density (Bus) were adopted to characterize residential 
built environment by following the ‘5 Ds’. Residential density and 
employment density were measured within a 1 km radius around 
the household location to reflect the density index. The Walk Score 
was obtained through the application programming interface (API) 
of the walkscore.com website, which is closely related to the diver-
sity index and the design index (Walk Score Methodology 2011). In 
addition to the Walk Score, intersection density was used to access 
the design index. The destination accessibility index was measured 
using distance to CBD. The distance to transit index was measured 
by distance to metro and bus stop density. Distance to metro took 
the form of an exponential distance decay function as 1 � e� d, in 
which d was the distance to the nearest metro stop (km). By using 
this function, distance to metro was scaled to range from 0 to 1 and 
was exponentially rather than linearly increased. Bus stop density 
was measured within a 1 km radius around the household location. 
Since bus stops are very dense in Nanjing and most household 
locations can reach a bus stop within 300 m, we used bus stop 
density rather than distance to a bus stop.

Household locations with a homogeneous built environment 
were grouped into clusters. After testing, using the clusters rather 
than including all the continuous built environment variables 
helps reduce overfitting and improve the generalizability of the 
model. It also makes the model easier to explain. Z-score standar-
dization was conducted for all the built environment variables. 
After standardization, all the variables follow a distribution with 
a mean of 0 and standard deviation of 1 and have an equal effect 
on clustering results. K-means, one of the most commonly used 
clustering algorithms, was used to generate clusters. K-means 
requires the number of clusters (k value) as an input in advance. 
Figure 2 is a scree plot used to determine the appropriate k value. 

Figure 1. Choice structure of DAPs.
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In general, as the k value increases, the within-groups sum of 
squares decreases, indicating smaller differences within groups. 
When it exceeds four, the curve becomes flat. Since a greater 
number of clusters would complicate cluster results and reduce 
the interpretability of cluster results, we chose four as the final 
k value. Figure 3 is a Cleveland dot plot showing the mean 
characteristics of the four clusters. From the first cluster to the 

fourth cluster in sequence, the built environment gradually 
changes from dense, mixed, and highly accessible land use to 
sparse, monotonous, and lowly accessible land use.

Methodology

In this section, we first introduced the C5.0 algorithm, which is the 
basis for the boosted C5.0 algorithm and rule-based C5.0 algorithm 
introduced later. Then, we proposed the boosted C5.0 algorithm to 
estimate DAPs and the rule-based C5.0 algorithm as a surrogate 
model to approximate and interpret the predictions of the boosted 
C5.0 algorithm. The conceptual diagram is shown in Figure 4.

C5.0 algorithm

The C5.0 algorithm is a thorough decision tree algorithm that splits 
observed data into homogeneous groups based on recursive parti-
tioning methods (Quinlan 2014). The C5.0 algorithm uses informa-
tion entropy as the purity index of a data set. In data set D, 
assuming the proportion of observations in class k is pk 
(k ¼ 1; 2; . . . ; yj j), the information entropy of D (Ent Dð Þ) is the 
summation of purity indices for all the existing classes, as Eq. (1) 
shows. 

Ent Dð Þ ¼ �
Xyj j

k¼1
pklog2pk (1) 

The smaller the value of Ent Dð Þ, the greater the purity of D. With 
Eq. (1), the purity index for every node in a decision tree can be 
calculated. Assuming a discrete independent variable a has V pos-
sible values a1; a2; . . . ; aVf g, if a is used to split D, V branch nodes 
are generated. The branch node v contains all the samples where a 
equals av. The information entropy of Dv can be computed using 
Eq. (1). Since the sample sizes in the branch nodes are different, 
each branch node is weighted by the sample size proportion 
( Dvj j= Dj j). Eq. (2) shows the information gain for the split on the 
discrete independent variable a. 

Gain D; að Þ ¼ Ent Dð Þ �
XV

v¼1

Dv

D
Ent Dvð Þ (2) 

The C5.0 algorithm splits a node by exhaustively searching over all 
the possible splits across all the independent variables to obtain the 
split that can maximize the information gain. Figure 5 shows the 
pseudocode of the C5.0 algorithm.

To overcome overfitting, the C5.0 algorithm conducts a final 
global pruning procedure. The overall strategy is to postprune the 
tree: First, grow a large tree that overfits the training data, then 
remove branches and nodes having little effect on the classification 
errors. The C5.0 algorithm can automatically use reasonable 
defaults for pruning and allows manual tuning.

Boosted C5.0 algorithm

Boosting is rooted in the notion that using a combination of numeric 
learners with complementary strengths and weaknesses is much more 
accurate than using any one of the learners alone. The boosted C5.0 
algorithm is similar to the AdaBoost algorithm in that the models are fit 
sequentially, with each iteration adjusting the case weights according to 
the accuracy of a sample’s prediction (Quinlan 2014). The notable 
differences are as follows: First, the boosted C5.0 algorithm creates 
successor trees of the same size as the initial tree; second, when combing 
the constituent trees, each tree computes the confidence values for each 
class, and an average of these values is calculated without using stage 

Figure 2. Scree plot of clustering.

Figure 3. Average characteristics of the clusters.

Figure 4. Conceptual diagram.

4 Y. DENG



weights. The class with the largest confidence value is the final choice; 
third, boosting is automatically stopped if the result is either highly 
effective (e.g., the sum of the weights for the misclassified samples is less 
than 0.1) or highly ineffective (e.g., the average weight of misclassified 
samples is greater than 0.5). Figure 6 shows the pseudocode of the 
boosted C5.0 algorithm.

There are extremely unequal instances in different categories of 
DAPs. The numbers of single and simple tour DAPs are much  

greater than those of multiple or complex tour DAPs. Like most 
other ML algorithms, the boosted C5.0 algorithm is sensitive to 
unbalanced data as unbalanced data bias the prediction toward the 
majority classes. To address this problem, we tested several pre-
processing techniques such as oversampling, under-sampling, and 
SMOTE (Chawla et al. 2002), and found that oversampling with 
square root weighting achieved the best performance, especially in 
improving the ability to discern minority DAPs and matching the 

Figure 5. The pseudocode of the C5.0 algorithm.

Figure 6. The pseudocode of the boosted C5.0 algorithm.
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total rates of different categories of DAPs. For square root weight-
ing, the weights of the largest class (SN in this study) were set to 1. 
Other classes were weighted by Eq. (3). 

wx ¼
ffiffiffiffiffiffiffiffiffi
nmax
p

=
ffiffiffiffiffi
nx
p

(3) 

where w stands for weight, n is the class size, x refers to a specific 
class and max refers to the largest class.

The performance of the boosted C5.0 algorithm is evaluated 
by accuracy, Kappa, and the Brier score. Accuracy is the per-
centage of instances that are correctly classified among all 
instances. Accuracy ranges from 0 (completely predicted 
wrong) to 1 (completely predicted correct). Kappa measures 
the agreement between the predicted and observed outcomes. 
Kappa is normalized at the baseline of random chance and 
ranges from −1 (complete disagreement) to 1 (complete agree-
ment). The Brier score measures the performance of the model 
on probability predictions (Brier 1950). Eq. (4) shows the cal-
culation of the Brier score, which is the average squared devia-
tion between the predicted probabilities for a set of alternatives 
and their outcomes. 

Brier score ¼
1
N

XN

i¼1
ðpi � oiÞ

2 (4) 

where pi is the predicted probability and oi is the observed value 
of the instance i (0 if negative and 1 if positive). N is the 
number of instances. A lower Brier score represents higher 
accuracy.

Surrogate model and rule-based C5.0 algorithm

The basic idea of the surrogate model (also known as the behavioral 
model or black-box model) is to find an interpretable model to 
approximate the behavior of ML as closely as possible. By inter-
preting the surrogate model, the behavior of ML can be revealed. 
The surrogate model is very intuitive and has been proven to be an 
effective way to interpret the decision process of ML (Molnar 2020). 
Any interpretable econometric model (e.g., the linear regression, 
decision tree, or rule lists) can be used as a surrogate model as long 
as it can mimic the ML prediction function well. Moreover, the 
choice of ML technique and the choice of the surrogate model are 
independent, which means that a surrogate model can be applied to 

interpret different ML techniques. This feature is important when 
different ML techniques need to be tried to achieve more accurate 
predictions.

The surrogate model is trained on the original training data, but 
with the ML predictions as the outcome. The performance of the 
surrogate model can be measured by the error rate for the classifi-
cation problem. A low error rate means that the surrogate model 
approximates the ML prediction function well. Of course, we can-
not expect that the surrogate model can fully capture the behavior 
of ML. If this is the case, then it is better to throw away the ML 
model and use a surrogate model instead.

In this study, the ML technique – boosted C5.0 algorithm is not 
very interpretable, so we used a rule-based C5.0 algorithm as 
a surrogate model to approximate the behavior of the boosted 
C5.0 algorithm. Rules can define the terminal nodes more simply 
than a tree because one or more conditions can be discarded with-
out changing the subset of observations belonging to the node. The 
rule-based C5.0 algorithm is based on the C5.0 algorithm we ela-
borated in the former section and uses the following scheme for 
deriving rules. First, after creating the initial tree via the C5.0 
algorithm, each path through the tree is collapsed into an individual 
rule. Second, the individual rules are simplified by pruning, and the 
number of constituent rules is reduced by a global procedure.

Three statistics (i.e., n=m, Laplace ratio, and lift) are used to 
evaluate the performance of each rule. N is the weighted number of 
training cases covered by the rule, and m is the weighted number of 
training cases covered by the rule but do not belong to the class. The 
Laplace ratio is a confidence estimator of the rule and is calculated 
as n � mþ 1ð Þ= nþ 2ð Þ. Laplace ratio ranges between 0 and 1. 
A value close to 1 implies a good confidence of the rule, while 
a value close to 0 implies the opposite. Lift measures the perfor-
mance of the rule in predicting cases compared to random chance. 
Lift ranges between 0 and þ1. A value close to 1 implies that the 
result is close to random chance and the rule is meaningless, while 
a value greater than 1 implies that the rule performs well in 
prediction.

Results

Model results

Following the common procedure for estimating ML models, we 
split the data into training (70%) and test (30%) sets and used 
stratified sampling to ensure consistent representation of the 

Table 2. Confusion matrices for the boosted C5.0 algorithm.

Training Data SM SM-SM SM-SN CM SN SN-SN CN H Observed Total Prediction Error

SM 227 2 1 3 50 2 2 2 289 1%
SM-SM 5 20 0 0 6 0 0 0 31 6%
SM-SN 2 0 21 0 0 2 0 0 25 4%
CM 4 1 0 33 0 0 0 0 38 5%
SN 40 6 3 2 342 24 17 21 455 3%
SN-SN 7 1 1 0 26 105 3 2 145 4%
CN 1 0 0 0 8 3 37 0 49 20%
H 7 3 0 2 11 3 0 58 84 1%
Predict Total 293 33 26 40 443 139 59 83 1116 Avg 6%
Test Data
SM 88 5 4 7 11 1 3 4 123 1%
SM-SM 6 2 0 1 1 2 0 0 12 0%
SM-SN 3 0 2 1 3 0 1 0 10 20%
CM 9 0 0 3 1 0 0 3 16 19%
SN 10 3 2 0 143 22 6 8 194 9%
SN-SN 2 0 0 0 31 22 4 3 62 13%
CN 1 1 0 0 8 5 5 1 21 10%
H 5 1 0 1 13 2 0 13 35 9%
Predict Total 124 12 8 13 211 54 19 32 473 Avg 10%
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dependent variable in the training and test sets. We examined three 
training–test splits (60–40%, 70–30%, and 80–20%) and found that 
the model performance of the boosted C5.0 algorithm and the 
common structure of the rules of the C5.0 algorithm were stable 
across all examined training–test splits.

The boosted C5.0 algorithm ran eight iterations and took only 
a few seconds on the laptop. It achieved an accuracy of 0.755, 
a kappa of 0.670, and a Brier score of 21.03 on the training set 
and an accuracy of 0.588, a kappa of 0.430, and Brier score of 21.28 
on the test set. Table 2 shows the confusion matrices comparing the 
predicted DAPs with the observed DAPs. For each class of DAPs, 
the prediction error (the absolute difference between the predicted 
total and the observed total divided by the observed total) was 
calculated. The diagonal cells contain 75.5% of the DAPs in the 
training set and 58.8% of the DAPs in the test set. These DAPs were 
correctly predicted by the model. Although large values were 
observed in the off-diagonal cells (cells that were incorrectly pre-
dicted) between SN and SM, SN and SN-SN, SN and CN, and SN 
and H, these off-diagonal cells were well balanced. The number of 
observed and predicted DAPs in each class of DAPs is close, which 
is important for travel demand modeling.

Model interpretation

We estimated a surrogate model using the rule-based C5.0 algo-
rithm. The training set was the same as the original training set, 
except that the predicted DAPs of the boosted C5.0 algorithm were 
used as the outcome instead of the observed DAPs. The error rate of 
the surrogate model is 18.7%, indicating that the surrogate model 
approximates the predictions of the boosted C5.0 algorithm well. It 
generates 24 rules, as shown in Table 3.

Two rules (rules 1 and 2) explain SM – the second largest class of 
DAPs. Work status is the most important variable in both rules. 
Three rules result in SM-SM (rules 3–5). Work status, household 
income, and residential built environment appear in all three rules. 
Education level and driver’s license ownership rank second as they 
appear in two rules (rules 3 and 4). Seniors with middle or low 
household incomes are more likely to choose SM-SM than seniors 

with high household incomes (rules 3–5). Four rules explain SM- 
SN (rules 6–9). Work status and residential built environment are 
the most influential variables, followed by household income, gen-
der, and bus pass ownership. For working seniors with middle 
household income and living in a good built environment, if they 
are female and live in an extended family (rule 6), or if they are male 
and do not have a bus pass and driver’s license (rule 7), they are 
more inclined to choose SM-SN. For seniors who have a bus pass 
and live in a bad built environment, if they are female and live in an 
elderly family (rule 8), or if their household income is low and they 
do not own a car (rule 9), they are more inclined to choose SM-SN. 
CM is determined by three rules (rules 10–12). Driver’s license 
ownership, household income, work status, and residential built 
environment play a role in all three rules. Education level, family 
composition, and age play a role in two of the rules. In all three 
rules, seniors all have a driver’s license and live in a good built 
environment, their household income is low (rules 10 and 11) or 
middle (rule 12), and they do not need to care for grandchildren as 
they live in an elderly family (rule 10) or an adult family (rule 12).

SN is the most common DAP for retired seniors (rule 13). Three 
rules result in SN-SN (rules 14–16). Age, household income, work 
status, residential built environment, and education level all appear 
in two of the three rules. Retired seniors (aged over 60) with middle 
or high household income and high education level meet rule 14. 
Retired younger seniors (aged 50 to 59) with middle or low house-
hold income and low education level meet rule 15. Although the 
household and personal attributes of seniors are opposite between 
rules 14 and 15, both cohorts live in a good built environment. 
Three rules determine CN (rules 17–19). Age is the most important 
variable and work status, household income, residential built envir-
onment, and family composition are the second most important 
variables. For retired younger seniors (aged 50 to 59), if they own 
a driver’s license and live in an elderly family (rule 17), or if they 
have a high household income and live in a good built environment 
(rule 18), they are more likely to choose CN. For seniors (aged over 
60), if they have a middle household income, live in an elderly 
family, and reside in a good built environment (rule 19), they are 
also more inclined to choose CN.

Table 3. Rules generated by the surrogate model.

DAP No. n/m Laplace ratio Lift Rule

SM 1 21/3.1 0.82 4.0 Job = Working, Edu = High, DL = Yes, BE = 3
2 496.4/295.1 0.41 2.0 Job = Working

SM-SM 3 20.3/8 0.60 9.0 Inc = Mid, Job = Working, Edu = Low, DL = Yes, FC = Adult, BE = 3
4 13.2/5.8 0.55 8.3 Inc = Mid, Job = Working, Edu = High, DL = No, BE = 2
5 30.4/18 0.41 6.2 Age = Younger senior, Inc = Low, Job = Working, BP = Yes, Car = 0, BE = 1

SM-SN 6 2.7 0.79 12.9 Gen = Female, Inc = Mid, Job = Working, FC = Extended, BE = 2
7 6.8/1.4 0.73 11.9 Gen = Male, Inc = Mid, Job = Working, Edu = Low, DL = No, BP = No, BE = 2
8 3.5/0.8 0.68 11.1 Gen = Female, Age = Younger senior, Job = Working, BP = Yes, FC = Elderly, BE = 4
9 11.6/6.2 0.47 7.7 Inc = Low, Job = Retired, BP = Yes, Car = 0, BE = 4

CM 10 4.9/0.8 0.74 9.4 Inc = Mid, Job = Working, Edu = Low, DL = Yes, FC = Elderly, BE = 2
11 12.9/4.7 0.62 7.9 Age = Younger senior, Inc = Mid, Job = Working, Edu = Low, DL = Yes, Car = 0, BE = 2
12 10/5.9 0.43 5.4 Age = Younger senior, Inc = Low, Job = Retired, DL = Yes, FC = Adult, BE in {1, 2, 3}

SN 13 654.6/402.7 0.39 1.5 Job = Retired
SN-SN 14 9.2/1.4 0.79 5.5 Age = Senior, Inc in {Mid, High}, Job = Retired, Edu = High, FC in {Adult, Extended}, BE = 1

15 21/13.2 0.38 2.7 Age = Younger senior, Inc in {Low, Mid}, Job = Retired, Edu = Low, DL = No, Car = 1, BE = 2
16 548.9/449.7 0.18 1.3 Gen = Female

CN 17 1.9 0.75 8.9 Age = Younger senior, Job = Retired, DL = Yes, FC = Elderly
18 8.3/2.5 0.66 7.8 Age = Younger senior, Inc = High, Job = Retired, Edu = Low, BE = 2
19 6.8/3 0.55 6.6 Age = Senior, Inc = Mid, Edu = High, FC = Elderly, BE in {1, 2}

H 20 16.6/6.3 0.61 5.6 Age = Senior, Job = Retired, BP = No, Bike in {2, 3}, BE = 4
21 11.9/4.6 0.60 5.5 Inc = Mid, BP = Y, Car = 0, Bike in {0, 1}, BE = 4
22 12.2/4.9 0.59 5.4 Inc in {Mid, High}, Job = Retired, Car in {1, 2}, Bike in {0, 1}, FC = Extended, BE = 4
23 8.8/4.4 0.50 4.6 Inc = Low, Job = Retired, Edu = High, BE in {1, 2}
24 11.3/6.9 0.41 3.7 Inc = Low, Job = Working, Car = 1, BE in {1, 2, 3}
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H is defined by five rules (rules 20–24). Residential built envir-
onment plays a predominant impact on H, followed by household 
income and work status. These five rules are divided into two 
branches according to the residential built environment. For 
seniors living in the worst built environments, if they do not have 
a bike or car (rule 21), or if they own a car and have a middle or high 
household income but live in an extended family (rule 22), they stay 
at home. These two rules reveal that if seniors do not undertake out- 
of-home activities, it may be due to an unfriendly built environ-
ment, lack of transport options, or the responsibility of caring for 

grandchildren. For seniors who live in a good built environment 
but have a low household income, they also stay at home (rules 23 
and 24).

Model comparison

We used a MNL model as a benchmark method to evaluate the 
performance of the boosted C5.0 algorithm. The MNL model was 
estimated with H as the reference. Table 4 shows the coefficients of 
the MNL model. It achieves an accuracy of 0.637, a kappa of 0.499, 

Table 4. Coefficients of the MNL model

Variable SM SM-SM SM-SN CM SN SN-SN CN

Intercept 4.24*** 2.58* 3.83*** 2.62* 2.16** – –
Job (Ref: Working)

Retired -2.49*** -1.88*** -0.95* -2.28*** – – –
Age (Ref: Younger senior)

Senior -1.54*** -1.57** -2.17*** -1.50** – 0.63* –
Gen (Ref: Male)

Female -0.60* -2.10*** -1.42*** – – – –
Edu (Ref: Low)

High -0.96** -0.79* -1.74*** -1.57*** -1.27*** -1.09** -0.9*
BP (Ref: Yes)

No -0.64* -1.33** – -0.84* – -1.08** –
DL (Ref: Yes)

No – – – – 0.74* 1.00* 1.09*
Bike (Ref: 0)

1 – – – – -1.06* -1.04* -1.13*
2 – – – – -1.07* -1.04* –
3 – – – – -1.20* – –

Inc (Ref: Low)
Mid – – 0.90* 0.90* – – 0.68*
High 1.23* – 1.63* 2.48*** – – 1.12*

FC (Ref: 1)
2 – -1.37** -1.87*** -1.12* -0.83* -0.85* -1.38**
≥3 -2.02*** – -3.33*** -2.61*** -1.12* -1.05* -1.68**

BE (Ref: 1)
3 – – – – – – 0.66*
4 -0.92* -1.34* – – -0.91* -0.93* –

Summary statistics
Log-likelihood -1755
AIC 3776

***, **, * denote significance at the 0.001, 0.01, and 0.1 levels, respectively.

Figure 7. Variable importance of the C5.0 algorithms and MNL model.
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and Brier score of 21.22 on the training set and an accuracy of 0.533, 
a kappa of 0.340, and Brier score of 21.79 on the test set. Both for 
class predictions and probability predictions, the boosted C5.0 
algorithm performs better than the MNL model on the training 
and test sets, respectively.

Although a one-to-one comparison between the rules of the C5.0 
algorithm and the coefficients of the MNL model is impossible, we 
compared the variable importance of the C5.0 algorithms and the 
MNL model to shed light on the effects of the variables in these 
models. The variable importance was computed using the permuta-
tion feature importance measure first proposed by Breiman (Breiman 
2001). We permuted the values of each variable one by one and 
compared the increase in the model prediction error. One variable 
is more important than another variable if shuffling the values of the 
variable increases the model prediction error more than shuffling the 
values of the other variable because in this case, the model relies more 
on the variable than the other variable for prediction. The results are 
shown in Figure 7. We found that the variable importance presented 
a similar pattern in the boosted C5.0 and rule-based C5.0 algorithms. 
Generally, Job, BE, Inc, and Edu are the most important variables 
(permutation error > 0.1), followed by Gen, FC, Age, and Bike 
(permutation error > 0.05), and Car, BP, and DL are the least 
important variables. Most of the variables have similar importance 
in the MNL model and the C5.0 algorithms, and a few variables with 
lower importance (i.e., Age, BP, and DL) differ more in importance in 
the MNL model and the C5.0 algorithms, with the former having 
larger values than the latter.

Table 5 shows the confusion matrices. The average prediction 
errors of the MNL model were larger than those of the boosted C5.0 
algorithm (26% vs. 6% for the training set and 18% vs. 10% for the 
test set). The same misclassification classes exist in the MNL model 
as in the boosted C5.0 algorithm, but the former has a larger 
proportion of misclassifications. The result also confirms the diffi-
culty of characterizing SM-SM, SM-SN, and CM, since these classes 
of DAPs were rarely observed.

Conclusions and discussion

The aging population has become a pervasive societal phenomenon 
all over the world. Modeling seniors’ DAPs is important for 
a comprehensive understanding of their activity-travel behavior. 

In this study, we formulated a DAP choice model and estimated it 
using the boosted C5.0 algorithm, which produced more accurate 
predictions than the MNL model. We then applied the rule-based 
C5.0 algorithm as a surrogate model to interpret the boosted C5.0 
algorithm. From a methodological point of view, the idea of the 
surrogate model was first used to interpret ML in activity-travel 
behavior studies. Users who wish to try ML but are unfamiliar with 
ML often need to understand how ML comes to decisions. By 
transforming ML into an interpretable surrogate model, users with-
out ML knowledge can understand the inner workings of ML. In 
short, ML is used for prediction, while the surrogate model is used 
for interpretation. From an empirical point of view, by investigating 
the rules derived from the surrogate model, this study revealed 
factors influencing seniors’ DAPs and enhanced the understanding 
of the activity-travel behavior of seniors in the Chinese context. 
Several implications for policy development and transportation 
planning for seniors are discussed below.

First, work status is the most influential variable. Retirement 
implies that seniors have more free time to spend on nonmandatory 
activities, but aging problems can discourage them from participat-
ing in out-of-home activities. Fewer out-of-home activities increase 
the risk of social exclusion and bring about health issues. Retired 
men are more likely to lack out-of-home activities than retired 
women. The findings could support governments in providing 
more open spaces and facilities to attract retired seniors, especially 
retired men, to participate in out-of-home activities.

Second, the residential built environment significantly influ-
ences the daily activity engagement of seniors. Some studies have 
found that trip-chaining was more prevalent in a bad built environ-
ment, where activities must be organized to avoid long travel dis-
tances to reach desired destinations (Elisabeth and Laurie 2015), 
but we found that multiple tour and complex tour DAPs (i.e., SM- 
SM, CM, SN-SN, and CN) are more likely to be undertaken in 
a good built environment. Household car ownership is not signifi-
cant for most DAPs. Most households in Nanjing had zero or one 
car, and even if a household had a car, the only car in the household 
was usually used by working adults. Seniors rely heavily on walking 
and public transit to get around, while for seniors in Western 
countries, the car is the main mode of transportation and defines 
their living space. The effect of driver’s license ownership is also 
small. All these results imply that increasing the accessibility of 
walking and public transit will increase the out-of-home activities 
of seniors.

Table 5. Confusion matrices for the MNL model.

Training Data SM SM-SM SM-SN CM SN SN-SN CN H Observed Total Prediction Error

SM 224 8 2 8 38 5 1 3 289 8%
SM-SM 5 16 0 2 6 0 1 1 31 29%
SM-SN 16 1 4 0 3 0 0 1 25 68%
CM 17 2 0 13 5 0 0 1 38 18%
SN 22 8 0 4 344 38 20 19 455 9%
SN-SN 6 2 1 1 58 61 13 3 145 24%
CN 3 0 1 3 16 4 21 1 49 22%
H 20 3 0 0 27 2 4 28 84 32%
Predict Total 313 40 8 31 497 110 60 57 1116 Avg 26%
Test Data
SM 86 6 3 11 13 2 1 1 123 9%
SM-SM 8 1 0 1 1 0 1 0 12 33%
SM-SN 3 2 0 0 5 0 0 0 10 50%
CM 9 1 0 2 3 0 0 1 16 6%
SN 19 1 1 1 127 25 8 12 194 3%
SN-SN 1 3 1 1 29 21 6 0 62 11%
CN 1 2 0 1 10 4 2 1 21 14%
H 7 0 0 0 12 3 0 13 35 20%
Predict Total 134 16 5 17 200 55 18 28 473 Avg 18%
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Third, household income and education level differentiate man-
datory DAPs. Seniors with a high household income and education 
level are more inclined to choose the single and simple mandatory 
tour DAP (i.e., SM), while seniors with middle or low household 
income and low education level are more inclined to choose the 
multiple or complex mandatory tour DAPs (i.e., SM-SM, SM-SN, 
and CM). Some studies have found that financially disadvantaged 
retirees may encounter social exclusion, and they may participate in 
out-of-home activities less frequently (Luiu, Tight, and Burrow 
2016). However, we found that household income and education 
level have a mixed effect on nonmandatory tour DAPs. We sus-
pected that this may be related to the generally walkable environ-
ment and the policy of free public transit for seniors in Nanjing. As 
the travel costs are low, the mobility of seniors in a low-income 
household may not be restricted. Conversely, seniors in a high- 
income household may need to care for the house and grandchil-
dren to ease the burden on younger earners; their activities may be 
restricted.

Fourth, although Chinese family composition is special, it 
explains only a few classes of DAPs. The most obvious result is 
that seniors in extended families are more likely to stay at home. As 
Feng et al. show, seniors in extended families often share household 
responsibilities, such as caring for children and running errands; 
they do not have much time or energy for out-of-home activities 
(Feng 2017). The impact of special family composition is mainly 
reflected in young females’ DAPs. The presence of elderly mothers 
tends to ease the burden of housework on young women, enabling 
them to participate in labor markets and recreational activities 
(Feng et al. 2020).

There are some limitations in this study. First, the boosted C5.0 
algorithm, like other ML algorithms, requires a larger amount of 
data. Because the samples of minor DAPs are small, predicting 
minor DAPs is still difficult, although the boosted C5.0 algorithm 
improves the predictive accuracy of minor DAPs compared to the 
MNL model. Second, the household travel survey only recorded 
a one-day travel diary. The DAPs shown in the off-diagonal cells of 
the confusion matrices may be seniors’ actual DAPs on another day. 
A multi-day travel diary can provide further insight into the under-
lying decision processes of DAP arrangements, especially DAP 
arrangements across multiple days. Third, the DAP choice model 
does not consider the start and end times of tours. Integrating 
a time modeling component with the DAP choice model will 
form a full activity scheduling module in an activity-based model-
ing framework.
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